翻訳と辞書
Words near each other
・ Viesca Municipality
・ Viescas
・ Vieska
・ Vieska nad Blhom
・ Vieska nad Žitavou
・ Vieska, Dunajská Streda District
・ Vieska, Veľký Krtíš District
・ Viesly
・ Viessmann
・ Viessoix
・ Viestards
・ Vieste
・ Vieste Cathedral
・ Vieste Lighthouse
・ Viennoiserie
Viennot's geometric construction
・ Vieno
・ Viens
・ Viens (surname)
・ Viens boire un p'tit coup à la maison
・ Viens chez moi, j'habite chez une copine
・ Viens jouer avec nous
・ Viens l'oublier
・ Viens M'embrasser
・ Viens voir les comédiens
・ Viens, Vaucluse
・ Vient de paraître
・ Vientiane
・ Vientiane Buffalos RUFC
・ Vientiane Bus Station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Viennot's geometric construction : ウィキペディア英語版
Viennot's geometric construction
In mathematics, Viennot's geometric construction (named after Xavier Gérard Viennot) gives a diagrammatic interpretation of the Robinson–Schensted correspondence in terms of shadow lines. It has a generalization to the Robinson–Schensted–Knuth correspondence, which is known as the matrix-ball construction.
==The construction==
Starting with a permutation \sigma \in S_n , written in two-line notation, say:
: \sigma = \begin
1 & 2 & \cdots & n \\
\sigma_1 & \sigma_2 & \cdots & \sigma_n
\end,
one can apply the Robinson–Schensted correspondence to this permutation, yielding two standard Young tableaux of the same shape, ''P'' and ''Q''. ''P'' is obtained by performing a sequence of insertions, and ''Q'' is the recording tableau, indicating in which order the boxes were filled.
Viennot's construction starts by plotting the points (i, \sigma_i) in the plane, and imagining there is a light that shines from the origin, casting shadows straight up and to the right. This allows consideration of the points which are not shadowed by any other point; the boundary of their shadows then forms the first shadow line. Removing these points and repeating the procedure, one obtains all the shadow lines for this permutation. Viennot's insight is then that these shadow lines read off the first rows of ''P'' and ''Q'' (in fact, even more than that; these shadow lines form a "timeline", indicating which elements formed the first rows of ''P'' and ''Q'' after the successive insertions). One can then repeat the construction, using as new points the previous unlabelled corners, which allows to read off the other rows of ''P'' and ''Q''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Viennot's geometric construction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.